
© 2014 Carnegie Mellon University

Collaborative Autonomy with
Group Autonomy for Mobile
Systems (GAMS)

Presenter: James Edmondson
 (jredmondson@sei.cmu.edu)

Date: November 18, 2014

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
18 NOV 2014

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Collaborative Autonomy with Group Autonomy for Mobile Systems
(GAMS)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Edmondson /James R.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute Carnegie Mellon University Pittsburgh,
PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

20

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2
James Edmondson

© 2014 Carnegie Mellon University

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use.
Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0001800

3
James Edmondson

© 2014 Carnegie Mellon University

Problems facing group autonomy
• Autonomy focus is on single unit control

• Focus is on centralized controllers (prone to
failure/attack)

• Autonomy frameworks tend to be targeted at
homogeneous platforms and algorithms

• Blocking communications are prone to
faults/attacks/outages/loss-of-control

• GPS is highly inaccurate for precise maneuvers

• Lack of standardization for autonomous
collaboration

Intro MADARA GAMS Conclusion

4
James Edmondson

© 2014 Carnegie Mellon University

Our Approach to Group
Autonomy

1. Create a portable, open-sourced,
decentralized operating environment for
autonomous control and feedback. Focus
on scalability, performance and
extensibility

2. Integrate the operating environment into
unmanned autonomous systems (UAS),
platforms, smartphones, tablets, and other
devices. Focus on portability.

3. Design algorithms and tools to perform
mission-oriented tasks like area coverage
and network bridging between squads

4. Design user interfaces to help single
human operators control and understand a
swarm of UAS, devices, and sensors
(human-on-the-loop autonomy)

Intro MADARA GAMS Conclusion

5
James Edmondson

© 2014 Carnegie Mellon University

FY 2014 Technologies/Platforms
We investigated several platforms and
collaborations in FY 2014, including:

• UAVs (Parrot and 3D Robotics)

• Throwables (Bounce Imaging),
Smartphones, Tablets (Android)

• High precision and gps-denied positioning

FY 2015 is focusing on autonomous swarms of
25+ boats (Platypus/CMU collaboration)

Intro MADARA GAMS Conclusion

6
James Edmondson

© 2014 Carnegie Mellon University

Principles of our open-sourced middleware (MADARA and
GAMS)
1. Be useful to application developers

2. Enable distributed, decentralized artificial intelligence

3. Be fast, small, and capable

4. Be portable to as many platforms relevant to UAS as possible

5. Be extensible to facilitate new transports, linking with external libraries,
security, assurance, and consistency

6. Provide extensive documentation

Intro MADARA GAMS Conclusion

7
James Edmondson

© 2014 Carnegie Mellon University

MADARA Architecture
More information, tutorials, and documentation at http://madara.googlecode.com

User
Code

Knowledge
Base

Logger

Native User
Functions

Transport

Filters

Bandwidth
Monitor

Packet
Scheduler

Network

User OS/file

KaRL Transport

Legend

System
Calls

OS/file

Intro MADARA GAMS Conclusion

Threads

8
James Edmondson

© 2014 Carnegie Mellon University

Key MADARA Features (2009-present)
• Allows developers to write both state-based and event-based programs

(or combinations of both) for distributed artificial intelligence

• Programs can react to receive, send, or rebroadcast events

• Programs can have deadline-enforced periodic executions, wait for
certain state-based conditions to come true, or execute efficient,
dynamic actions in KaRL (Knowledge and Reasoning Language)

• Provides object-oriented containers and threads as first class entities

• Supports C++, Java, Python, ARM, Intel, Windows, Linux, Android, iOS

• Supports IP multicast, broadcast, unicast, OMG DDS transports

• Enforces consistency of updates through Lamport clocks, priorities

• Extensible transport layer, filtering system, and callbacks

• Extensive documentation (guides, tutorials, doxygen)

Intro MADARA GAMS Conclusion

9
James Edmondson

© 2014 Carnegie Mellon University

How MADARA helps researchers and developers
• Facilitates distributed and multithreaded programming

• Networking and threading is provided

• Performance and scaling is exceptional

• Language and architecture portability to prevent vendor lock-in and
shorten transition timeframe

• Open source. Free. Extensible.

• Allows reseachers to focus on what is important to them

• Quickly code and experiment with multi-processed, multi-threaded,
or multi-robot applications with dependable, portable code

• Scale to thousands of collaborating entities in real-time

Intro MADARA GAMS Conclusion

10
James Edmondson

© 2014 Carnegie Mellon University

GAMS Architecture (FY 2014)
1. Built directly on top of MADARA

2. Utilizes MAPE loop (IBM autonomy construct)

3. Provides extensible platform, sensor, and algorithm support

4. Uses new MADARA feature called containers, which support object-oriented
programming of the Knowledge Base

Intro MADARA GAMS Conclusion

11
James Edmondson

© 2014 Carnegie Mellon University

GAMS Architecture (FY 2014)

Key points:

• During the MAPE loop, the context is locked from external updates

• At the end of the MAPE loop, all global variable changes are aggregated
together and sent to other UAS participating in the mission

Intro MADARA GAMS Conclusion

12
James Edmondson

© 2014 Carnegie Mellon University

GAMS Platform and Algorithm Interactions

The Monitor, Plan, and Execute phases are pretty straight-forward

Intro MADARA GAMS Conclusion

13
James Edmondson

© 2014 Carnegie Mellon University

GAMS Platform and Algorithm Interactions

During the analyze phase:

1. The platform analyzes its state and informs the rest of the GAMS system via
MADARA variables

2. The system analyzes the platform and environment for algorithm changes

3. The algorithm then analyzes its state and sets appropriate MADARA variables.

Intro MADARA GAMS Conclusion

14
James Edmondson

© 2014 Carnegie Mellon University

GAMS Platform and Algorithm Interactions

About system_analyze ():

1. The platform can inform the control loop of gps-spoofing, if it has capabilities

2. Check_gps () is also intended to implement gps-spoof checking in software

3. Environmental or platform characteristics can result in changes to the platform
(e.g., an arm is damaged) or algorithm (e.g., the UAS should return home)

Intro MADARA GAMS Conclusion

15
James Edmondson

© 2014 Carnegie Mellon University

How to use GAMS with new platforms and algorithms
1. Extend the platform base class

• Implement move (), land (), takeoff (), or other functions

• Implement sense ()

• Implement analyze ()

2. Extend the algorithm base class
• Implement analyze ()

• Implement plan ()

• Implement execute ()

3. Extend the base controller class (optional)
• Override MAPE methods

4. Use the parameterized Mape_Loop class (optional)
• Use the define_monitor, define_analyze, etc. methods with MADARA

functions

Intro MADARA GAMS Conclusion

16
James Edmondson

© 2014 Carnegie Mellon University

What exactly are we solving?
1. MADARA is a bit expansive in its capabilities and developers can find

themselves pulled in many different directions when thinking of autonomy to
implement. GAMS provides an interface for algorithms and platforms
to be added and utilized within a wireless environment

2. GAMS provides mechanisms for tracking platform and algorithm
states and characteristics, such as detection of GPS-spoofing,
blocked/deadlocked conditions within algorithms, low battery, degraded
sensors, etc.

3. While MADARA may support any type of distributed artificial intelligence
paradigm, GAMS provides a stable, consistent framework for group
autonomous behaviors and may prove beneficial to standardization
efforts for group autonomy

Intro MADARA GAMS Conclusion

17
James Edmondson

© 2014 Carnegie Mellon University

New Features in FY 2015
1. Tighter and more feature rich MADARA interactions

• GAMS may now be directly ran inside of MADARA threads (October
2014)

• GAMS may now run at multiple hertz speeds for sampling sensors at
varying rates

• GAMS may have separate sampling and sending hertz rates

2. Multiple platform support in VREP and real-world

• VREP: Quadcopter, Ant, and possibly Boat models and platforms

• Real World: Drone-RK quadcopter and Platypus boat

3. Even more focus on scale and reliability

Intro MADARA GAMS Conclusion

18
James Edmondson

© 2014 Carnegie Mellon University

FY 2015 Goals and Objectives (ELASTIC Project)
1. Showcase GAMS and MADARA on 25+ real, collaborating robots

• Focusing on Paul Scerri’s robotic boats (Platypus/CMU)

2. Facilitate transition of GAMS/MADARA into DARPA or DoD Labs

3. Quantify scalability limitations

4. Identify best practices for developing distributed mission-focused autonomy
applications

Intro MADARA GAMS Conclusion

19
James Edmondson

© 2014 Carnegie Mellon University

Closing remarks
In this talk, we’ve discussed

• A distributed reasoning engine called MADARA that provides portable, fast
reasoning services for distributed artificial intelligence

• An extensible framework called GAMS for distributed algorithms and platforms
that enables Monitor-Analyze-Plan-Execute-based distributed autonomous systems

Intro MADARA GAMS Conclusion

20
James Edmondson

© 2014 Carnegie Mellon University

FY 2014 Open Source Release
The algorithms, tools, and middleware created at
SEI are released via BSD-style licenses through
the following projects:

• Multi-Agent Distributed Adaptive Resource
Allocation (MADARA) for the distributed OS
layer: http://madara.googlecode.com

• Group Autonomy for Mobile Systems (GAMS)
for the algorithms and UIs: http://gams-
cmu.googlecode.com

• Model Checking for Distributed Applications
(MCDA) http://mcda.googlecode.com

• Drone-RK for the UAV device drivers:
http://www.drone-rk.org

• Contact: jredmondson@sei.cmu.edu

SEI Project Members

James Edmondson

Sagar Chaki

Sebastian Echeverria

Gene Cahill

CMU Project Members

Anthony Rowe

Oliver Shih

Luis Pinto

Vanderbilt Students

Anton Dukeman (CS)

Subhav Pradhan (ISIS)

Intro MADARA GAMS Conclusion

	Collaborative Autonomy with Group Autonomy for Mobile Systems (GAMS)
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

